首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93148篇
  免费   254篇
  国内免费   812篇
  2023年   1篇
  2022年   2篇
  2021年   10篇
  2020年   4篇
  2019年   4篇
  2018年   11837篇
  2017年   10670篇
  2016年   7446篇
  2015年   588篇
  2014年   281篇
  2013年   292篇
  2012年   4199篇
  2011年   12802篇
  2010年   11992篇
  2009年   8222篇
  2008年   9777篇
  2007年   11353篇
  2006年   250篇
  2005年   500篇
  2004年   958篇
  2003年   1014篇
  2002年   774篇
  2001年   254篇
  2000年   158篇
  1999年   25篇
  1998年   7篇
  1997年   23篇
  1996年   9篇
  1995年   1篇
  1994年   6篇
  1993年   30篇
  1992年   20篇
  1991年   37篇
  1990年   8篇
  1989年   7篇
  1988年   18篇
  1987年   13篇
  1984年   7篇
  1983年   17篇
  1982年   2篇
  1980年   2篇
  1975年   5篇
  1972年   246篇
  1971年   274篇
  1970年   5篇
  1965年   13篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The OSPAR Eutrophication Strategy requires assessment of eutrophication to be based on the ecological consequences of nutrient enrichment and not just on nutrient enrichment alone, i.e. finding reliable evidence for accelerated growth of algae and higher forms of plant life caused by anthropogenic nutrient enrichment, leading to undesirable disturbance. Fully flushed marine waters of England and Wales (salinity >30) were assessed against OSPAR’s harmonised criteria of nutrient concentration and ratios, chlorophyll concentrations, phytoplankton indicator species, macrophytes, dissolved oxygen (DO) levels, incidence of fish kills and changes in the zoobenthos, using region specific thresholds. None of the thirteen assessment areas, including six nutrient enriched areas, exhibited evidence for undesirable disturbance. This paper details the methods and the overall outcome of the assessment. It presents evidence that undesirable disturbance caused by nutrient enrichment was not detected in English and Welsh marine waters assessed under the OSPAR procedure. The main reasons for the lack of eutrophication problems, such as the underwater light climate limiting the accelerated growth of algae, which might otherwise result from nutrient enrichment, are discussed.  相似文献   
992.
993.
994.
Nutrient enrichment threatens river ecosystem health in urban watersheds, but the influence of urbanization on spatial variation in nutrient concentrations and nutrient limitation of biofilm activity are infrequently measured simultaneously. In summer 2009, we used synoptic sampling to measure spatial patterns of nitrate (NO3 ), ammonium (NH4 +), and soluble reactive phosphorus (SRP) concentration, flux, and instantaneous yield throughout the Bronx River watershed within New York City and adjacent suburbs. We also quantified biofilm response to addition of NO3 , phosphate (PO4 3−), and NO3  + PO4 3− on organic and inorganic surfaces in the river mainstem and tributaries. Longitudinal variation in NO3 was low and related to impervious surface cover across sub-watersheds, but spatial variation in NH4 + and SRP was higher and unrelated to sub-watershed land-use. Biofilm respiration on organic surfaces was frequently limited by PO4 3− or NO3  + PO4 3−, while primary production on organic and inorganic surfaces was nutrient-limited at just one site. Infrequent NO3 limitation and low spatial variability of NO3 throughout the watershed suggested saturation of biological N demand. For P, both higher biological demand and point-sources contributed to greater spatial variability. Finally, a comparison of our data to synoptic studies of forested, temperate watersheds showed lower spatial variation of N and P in urban watersheds. Reduced spatial variation in nutrients as a result of biological saturation may represent an overlooked effect of urbanization on watershed ecology, and may influence urban stream biota and downstream environments.  相似文献   
995.
The seasonal pattern and primary mechanism of nitrogen (N) export by surface runoff from the Wuchuan subwatershed (WCW), an agricultural upper watershed (1.88 km2) located in southeast China, were investigated based on extensive streamwater measurements in 2004–2005 under subtropical climatic conditions. The results disclosed a highly variable but strong linkage between hydrological and anthropogenic controls and N export. N export via surface runoff presented a significant seasonal pattern caused by changes in rainfall and watershed N input. Approximately 75% of the annual N export (67 kg ha−1) was flushed by those storm runoff mainly occurred during the wet season (March through September). The WCW dataset of N concentrations and loads during both baseflow and stormflow implied an interactive effects of anthropogenetic N input and hydrology conditions: N export was flush-driven in late spring, summer and autumn (wet season), but highly related with soil N in winter and early spring. Compared to undisturbed watersheds under similar rainfall conditions, WCW exported a considerable amount of N due to intensive fertilizer application (a mean of 690 kg N ha−1 year−1, commonly as surface applications). This work provides a first characterization of a small agricultural Chinese catchment under subtropical climates and its associated N export behavior.  相似文献   
996.
In-canopy mixing ratio gradients and above-canopy fluxes of several volatile organic compounds (VOCs) were measured using a commercial proton transfer reaction mass spectrometer (PTR-MS) in a European beech (Fagus sylvatica) forest in Denmark. Fluxes of methanol were bidirectional: Emission occurred during both day and night with highest fluxes (0.2 mg C m−2 h−1) during a warm period; deposition occurred dominantly at daytime. Confirming previous branch-level measurements on beech, the forest’s monoterpene emissions (0–0.5 mg C m−2 h−1), and in-canopy mixing ratios showed a diurnal cycle consistent with light-dependent emissions; a result contrasting temperature-only driven emissions of most conifer species. Also emitted was acetone, but only at ambient temperatures exceeding 20°C. Slow deposition dominated at lower temperatures. Our in-canopy gradient measurements contrast with earlier results from tropical and pine forest ecosystems in that they did not show this beech ecosystem to be a strong sink for oxygenated VOCs (OVOCs). Instead, their gradients were flat and only small deposition velocities (<0.2 cm s−1) were observed to the onsite soil. However, as methanol soil uptake was consistent and possibly related to soil moisture, more measurements are needed to evaluate its soil sink strength. In turn, as canopy scale fluxes are net fluxes with stomatal emissions from photosynthesizing leaves potentially affecting non-stomatal oxygenated VOC uptake, only independent, controlled laboratory experiments may be successful in separating gross fluxes.  相似文献   
997.
Peatlands act as a sink of carbon (C) through the accumulation of dead remains of plants. Under global changes triggered by human activities, it is not only the sink capacity of peatland that is in danger, but also the C already stored. Invasion of Sphagnum peatlands, mainly by Molinia caerulea and Betula spp, is a growing preoccupation. This study aims to assess the extent of the influence of this invasion on the biochemical characteristics of the peat. Elemental analysis, sugar and Rock–Eval pyrolysis parameters were measured in 50 cm profiles collected in invaded and intact plots. The results show that oxygen index ratios (OICO2/OICO) can be used to detect new C substrate injection as invading plants have a lower ratio than Sphagnum spp and Sphagnum peat. Total hemicellulosic sugar contents and organic matter (OM) degradation indices (R400, PPI) suggest that the invading plants promote a faster OM decomposition probably through a faster degradability and a relatively higher nutrient content of their litter. Differences in terms of nutrient status between areas of the peatland are suggested to be of great importance in determining the extent of OM transformation likely due to stoichiometric constraints.  相似文献   
998.
During the 2007 and 2008 hunting seasons (April–October) the skin of 367 roe deer (Capreolus capreolus L.), hunted in different preserves from Galicia (Northwestern Spain), were examined for ticks (Acari: Ixodidae). The overall prevalence of infestation by ticks was 83.1%. The predominant species was Ixodes ricinus (83.1%), whereas a single Dermacentor marginatus specimen appeared in one roe deer. All developmental stages of I. ricinus were found parasitizing roe deer, the adults being the most frequent (82.2%), followed by nymphs (45.6%) and larvae (27.2%). The mean intensity of infestation by I. ricinus was 43.2 ± 49.85; most of them were adults (30.7 ± 31.64) and in a lesser extend nymphs (16.9 ± 24.74) and larvae (10.7 ± 29.90). Ixodes ricinus was present all over the study with percentages that oscillated between 100% in spring and 57.4% in autumn. CHAID algorithm showed the sex of roe deer as the most influential factor in tick prevalence, followed by the climatic area. The different developmental stages of I. ricinus were more frequent in males than in females, and the prevalence of adults and larvae were higher in roe deer from coastal areas than in those from mountainous and central areas, whereas nymphs were more frequent in mountainous areas. Host age and density were not determinants for tick infestation. Our results confirm that roe deer are important hosts for I. ricinus in northwestern Spain, serving as a vehicle for the geographic distribution of these ticks.  相似文献   
999.
The colonization rates of understorey plants into forests growing on former agricultural land differ remarkably among species. Different dispersal and recruitment largely account for the contrasting colonization rates, but different effects of the soil legacies of former agricultural land use on plant performance may also play a role. Seven herbaceous forest species were sampled in paired post-agricultural and ancient forest stands to study whether land-use history has an effect on the aboveground nutrient concentrations (N, P and N:P ratios) and biomass of forest herbs and, if so, whether slow and fast colonizing species respond differently. Results showed that P concentrations were significantly affected by former land use with higher concentrations in the post-agricultural stands. N concentrations were unaffected and N:P ratios were significantly higher in the ancient stands. Nutrient concentrations varied considerably among species, but the variation was unrelated to their colonization capacity. Six out of the seven species had higher biomass in the post-agricultural stands relative to the ancient stands, and the degree to which the species increased biomass was positively related to their colonization capacity, i.e., the fast colonizing species showed the strongest increase. Such differential responses to past land use may contribute to the contrasting colonization capacity of forest plants. Land-use history thus affected both the nutrient concentrations and biomass of forest herbs, and only the biomass response was related to colonization capacity.  相似文献   
1000.
Since the 1950s, agricultural intensification has affected the structure and functioning of ecological systems including wet grasslands. Our study site, a wet grassland near Třeboň, Czech Republic, was historically a sedge meadow, but increased nutrient additions, a long-lasting flood in 2002 and changed mowing patterns resulted in domination by Phalaris arundinacea. The aim of the study was to determine how different nutrient conditions may affect plant structure and production in a wet grassland used for hay production. Species composition and percent cover were determined from line intercepts. Aboveground biomass was harvested six times each in 2007 and 2008 and primary production then calculated. Ingrowth core bags were used to determine belowground production. Aboveground production was two times greater in the high nutrient versus the low nutrient area in both years, while belowground production was very similar. The high nutrient area was still dominated by P. arundinacea, but Carex gracilis was now a co-dominant in the low nutrient area. However, other factors, such as water level and mowing regime, may interact with nutrient level to govern wet grassland structure and function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号